Postulate 2 | x+0 = x | x⋅1 = x |
---|---|---|
Postulate 5 | x+x′ = 1 | x⋅x′ = 0 |
Theorem 1 | x+x = x | x⋅x = x |
Theorem 2 | x+1 = 1 | x⋅0 = 0 |
Theorem 3, Involution |
(x′)′ = x | |
Postulate 3, commutative |
x+y = y+x | xy = yx |
Theorem 4, associative |
x+(y+z) = (x+y)+z | x(yz) = (xy)z |
Postulate 4, distributive |
x(y+z) = xy+xz | x+yz = (x+y) (x+z) |
Theorem 5, DeMorgan |
(x+y)′ = x′y′ | (xy)′ = x′+y′ |
Theorem 6, absorption |
x+xy = x | x(x+y) = x |
1. A + AB = A
2. A . (A + B) = A
3. A + A'B = A + B
4. A . (A' + B) = AB
5. AB + BC + A'C = AB + A'C
6. (A + B) (B + C) (A' + C) = (A + B) (A' + C)
To find duality convert (+) to (.) or vice-versa
Example: A + B = A . B
Step 1: Find the dual of the function.
Step 2: Complement each literals/varaibles.
Example: F1 = X'YZ' + X'Y'Z
S1 => F1 = (X' + Y + Z') . (X' + Y' + Z)
S2 => F1' = (X + Y' + Z) . (X + Y + Z') //answer
A minterm, denoted as mi, is a product (AND)
uncomplemented X = 1,
complemented X' = 0
Example :
F = x + yz
= x (y + y') (z +
z') + (x + x') yz
= xyz + xyz' + xy' z + xy' z' + xyz + x' yz
= x' yz + xy' z' + xy' z + xyz' + xyz
= m3 +
m4 + m5 + m6 + m7
= ∑(3, 4, 5, 6, 7)
A maxterm, denoted as Mi, is a product (OR)
uncomplemented X = 0,
complemented X' = 1
Example :
F = (x+y+z) • (x+y+z') • (x+y'+z) •
(x'+y+z)
M0•M1•M2•M4
= ∏(0, 1, 2, 4)
x | y | z | Minterms | Maxterms | F | F' |
---|---|---|---|---|---|---|
0 | 0 | 0 | m0= x'y'z' | M0= x+y+z | 0 | 1 |
0 | 0 | 1 | m1= x'y'z | M1= x+y+z' | 1 | 0 |
0 | 1 | 0 | m2= x'yz' | M2= x+y'+z | 0 | 1 |
0 | 1 | 1 | m3= x'yz | M3= x+y'+z' | 1 | 0 |
1 | 0 | 0 | m4= xy'z' | M4= x'+y+z | 1 | 0 |
1 | 0 | 1 | m5= xy'z | M5= x'+y+z' | 0 | 1 |
1 | 1 | 0 | m6= xyz' | M6= x'+y'+z | 0 | 1 |
1 | 1 | 1 | m7= xyz | M7= x'+y'+z' | 0 | 1 |